17 research outputs found

    Proceedings of the International Micro Air Vehicles Conference and Flight Competition 2017 (IMAV 2017)

    Get PDF
    The IMAV 2017 conference has been held at ISAE-SUPAERO, Toulouse, France from Sept. 18 to Sept. 21, 2017. More than 250 participants coming from 30 different countries worldwide have presented their latest research activities in the field of drones. 38 papers have been presented during the conference including various topics such as Aerodynamics, Aeroacoustics, Propulsion, Autopilots, Sensors, Communication systems, Mission planning techniques, Artificial Intelligence, Human-machine cooperation as applied to drones

    Avionics/Control co-design for large flexible space structures

    Get PDF
    In this paper, a multi-model H1 synthesis scheme for fixed-structure controller design is developed and applied to the attitude control of a highly flexible earth-observation satellite. The particularity of the proposed approach is that the decision variables optimized by the fixed-structure Hinfinity solver include the structured controller parameters but also some parameters which characterize the avionics. Furthermore the proposed control scheme can be very easily adapted to a new configuration of sensors and thus can handle gyro or gyroless configurations. This way, various avionics configurations can be easily evaluated. The avionics characteristics for a given configuration and the control law can be simultaneously optimized avoiding time-consuming iterations between the definition of avionics and the design of the controller on the basis of the current avionics. The approach is applied on a earth observation satellite for two different study cases. The first one aims to design an improved controller in order to meet the nominal requirements with a poor avionics. The second ones aims to find a controller and an improved avionics to meet very challenging requirements

    Collision Avoidance of multiple MAVs using a multiple Outputs to Input Saturation Technique

    Get PDF
    This paper proposes a novel collision avoidance scheme for MAVs. This scheme is based on the use of a recent technique which is based on the transformation of state constraints into timevarying control input saturations. Here, this technique is extended so as to ensure collision avoidance of a formation of up to three MAVs. Experimental results involving three A.R drones show the efficiency of the approach

    Commande référencée vision pour drones à décollages et atterrissages verticaux

    Get PDF
    La miniaturisation des calculateurs a permis le développement des drones, engins volants capable de se déplacer de façon autonome et de rendre des services, comme se rendre clans des lieux peu accessibles ou remplacer l'homme dans des missions pénibles. Un enjeu essentiel dans ce cadre est celui de l'information qu'ils doivent utiliser pour se déplacer, et donc des capteurs à exploiter pour obtenir cette information. Or nombre de ces capteurs présentent des inconvénients (risques de brouillage ou de masquage en particulier). L'utilisation d'une caméra vidéo dans ce contexte offre une perspective intéressante. L'objet de cette thèse était l'étude de l'utilisation d'une telle caméra dans un contexte capteur minimaliste: essentiellement l'utilisation des données visuelles et inertielles. Elle a porté sur le développement de lois de commande offrant au système ainsi bouclé des propriétés de stabilité et de robustesse. En particulier, une des difficultés majeures abordées vient de la connaissance très limitée de l'environnement dans lequel le drone évolue. La thèse a tout d'abord étudié le problème de stabilisation du drone sous l'hypothèse de petits déplacements (hypothèse de linéarité). Dans un second temps, on a montré comment relâcher l'hypothèse de petits déplacements via la synthèse de commandes non linéaires. Le cas du suivi de trajectoire a ensuite été considéré, en s'appuyant sur la définition d'un cadre générique de mesure d'erreur de position par rapport à un point de référence inconnu. Enfin, la validation expérimentale de ces résultats a été entamée pendant la thèse, et a permis de valider bon nombre d'étapes et de défis associés à leur mise en œuvre en conditions réelles. La thèse se conclut par des perspectives pour poursuivre les travaux.The computers miniaturization has paved the way for the conception of Unmanned Aerial vehicles - "UAVs"- that is: flying vehicles embedding computers to make them partially or fully automated for such missions as e.g. cluttered environments exploration or replacement of humanly piloted vehicles for hazardous or painful missions. A key challenge for the design of such vehicles is that of the information they need to find in order to move, and, thus, the sensors to be used in order to get such information. A number of such sensors have flaws (e.g. the risk of being jammed). In this context, the use of a videocamera offers interesting prospectives. The goal of this PhD work was to study the use of such a videocamera in a minimal sensors setting: essentially the use of visual and inertial data. The work has been focused on the development of control laws offering the closed loop system stability and robustness properties. In particular, one of the major difficulties we faced came from the limited knowledge of the UAV environment. First we have studied this question under a small displacements assumption (linearity assumption). A control law has been defined, which took performance criteria into account. Second, we have showed how the small displacements assumption could be given up through nonlinear control design. The case of a trajectory following has then been considered, with the use of a generic error vector modelling with respect to an unknown reference point. Finally, an experimental validation of this work has been started and helped validate a number of steps and challenges associated to real conditions experiments. The work was concluded with prospectives for future work.TOULOUSE-ISAE (315552318) / SudocSudocFranceF

    Analysis of relative navigation architectures for formation flying spacecrafts

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2006.Includes bibliographical references (p. 191-194).Many future space missions will involve fleets with a large number of satellites flying in formation. Indeed, such fleets provably offer more reliability, redundancy, scalability and repeatability. However, large fleets also represent a challenge, especially for the navigation algorithms, which must provide an accurate estimate of the state of the fleet, with minimum requirements. Furthermore, as the number of satellites in the fleet increases, the computations to be performed increase dramatically, as well as the synchronization and communication requirements, making the design of efficient algorithms a difficult challenge. Based on previous studies, Decentralized Algorithms were designed to spread the computational task. Hierarchic Algorithms were also studied in order to reduce the synchronization requirements. This thesis presents both analytical and numerical comparisons of these algorithms in terms of accuracy, computational complexity, synchronization, and communication. The Decentralized and Hierarchic Algorithms were shown to have good performance in terms of accuracy, while involving far fewer computations than the Centralized Algorithm. As a result, they can be used as scalable algorithms for large formation flying fleets.(cont.) The thesis investigated two additional problems often associated with navigation filters. The first study considers the problem of processing delayed measurements. Three strategies are analyzed, and compared in terms of the accuracy of the estimate they perform, and the memory and computations they require. One of these approach is shown to be efficient, being accurate without requiring heavy computations nor memory. The second study analyzes a particular instability of the Extended Kalman Filter, encountered when two sensors have very different accuracies. The instability is explained and a method to fix it is proposed. In the example analyzed the method proves to be efficient in addressing the instability.by Henry Jacques Lefebvre de Plinval-Salgues.S.M

    Editorial IJMAV: Special issue IMAV 2017

    Get PDF
    IMAV 2017 has gathered more than 280 participants from 30 different countries including Asia, North, Central and South America, Europe, and Australia. The special issue IMAV 2017 includes a selection of the best papers nominated for the "Best Paper Award"

    UAV Obstacle Avoidance Scheme Using an Output to Input Saturation Transformation Technique

    Get PDF
    This paper presents a novel obstacle avoidance scheme for UAVs. This scheme is based on the use of a technique recently developed by one of the authors, which is based on a transformation of a variable constraint into an input saturation. In the case of obstacle avoidance, this saturation is designed so as to ensure a safe trajectory around the obstacles, offering a proof of this desired behavior. A low-cost RGB-D sensor has been used to detect obstacles as its output measurements of the environment are effortlessly interpreted even with a low power embedded processor. Experimental results are provided, together with a simulation, to prove the efficiency of the approach

    Visual Servoing for Vertical Take-Off and Landing Unmanned Aerial Vehicles

    No full text
    La miniaturisation des calculateurs a permis le développement des drones, engins volants capable de se déplacer de façon autonome et de rendre des services, comme se rendre clans des lieux peu accessibles ou remplacer l'homme dans des missions pénibles. Un enjeu essentiel dans ce cadre est celui de l'information qu'ils doivent utiliser pour se déplacer, et donc des capteurs à exploiter pour obtenir cette information. Or nombre de ces capteurs présentent des inconvénients (risques de brouillage ou de masquage en particulier). L'utilisation d'une caméra vidéo dans ce contexte offre une perspective intéressante. L'objet de cette thèse était l'étude de l'utilisation d'une telle caméra dans un contexte capteur minimaliste: essentiellement l'utilisation des données visuelles et inertielles. Elle a porté sur le développement de lois de commande offrant au système ainsi bouclé des propriétés de stabilité et de robustesse. En particulier, une des difficultés majeures abordées vient de la connaissance très limitée de l'environnement dans lequel le drone évolue. La thèse a tout d'abord étudié le problème de stabilisation du drone sous l'hypothèse de petits déplacements (hypothèse de linéarité). Dans un second temps, on a montré comment relâcher l'hypothèse de petits déplacements via la synthèse de commandes non linéaires. Le cas du suivi de trajectoire a ensuite été considéré, en s'appuyant sur la définition d'un cadre générique de mesure d'erreur de position par rapport à un point de référence inconnu. Enfin, la validation expérimentale de ces résultats a été entamée pendant la thèse, et a permis de valider bon nombre d'étapes et de défis associés à leur mise en œuvre en conditions réelles. La thèse se conclut par des perspectives pour poursuivre les travaux.The computers miniaturization has paved the way for the conception of Unmanned Aerial vehicles - "UAVs"- that is: flying vehicles embedding computers to make them partially or fully automated for such missions as e.g. cluttered environments exploration or replacement of humanly piloted vehicles for hazardous or painful missions. A key challenge for the design of such vehicles is that of the information they need to find in order to move, and, thus, the sensors to be used in order to get such information. A number of such sensors have flaws (e.g. the risk of being jammed). In this context, the use of a videocamera offers interesting prospectives. The goal of this PhD work was to study the use of such a videocamera in a minimal sensors setting: essentially the use of visual and inertial data. The work has been focused on the development of control laws offering the closed loop system stability and robustness properties. In particular, one of the major difficulties we faced came from the limited knowledge of the UAV environment. First we have studied this question under a small displacements assumption (linearity assumption). A control law has been defined, which took performance criteria into account. Second, we have showed how the small displacements assumption could be given up through nonlinear control design. The case of a trajectory following has then been considered, with the use of a generic error vector modelling with respect to an unknown reference point. Finally, an experimental validation of this work has been started and helped validate a number of steps and challenges associated to real conditions experiments. The work was concluded with prospectives for future work

    Hsiao Mapping Contoured Terrain: A Comparison of SLAM Algorithms for Radio-Controlled Helicopters, Cognitive Robotics

    No full text
    In the context of a natural disaster, or when a military pilot has to eject in enemy territory, Search and Rescue teams often have to find people in unknown or hazardous areas. For safety reasons, Search and Rescue teams of the future will probably make use of unmanned aerial vehicles. For such a rescue vehicle, the ability to localize itself, bot
    corecore